ChE-403 Problem Set 1.3

Week 3
Problem 1
A) Can you derive/calculate E(t) for a CSTR?

B) Can you use E(t) to calculate t ?
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Perfect mixing

Hint: you measure E(t) by injecting a tracer and measuring the output concentration. Can
you calculate what C(t) is for a CSTR if you inject a known number of moles of a tracer
Ny att=0

You will also need the following integral identity: | Ooo xexp(—x)dx =1

Solution:
a) @ t = 0 the tracer is perfectly mixed/diluted: C(t = 0) = I‘:’—: =C°
After injection the mass balance on the tracer is:
Acc. = In — Out +Source
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b) £= [ t'E(t)dt’
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To make our identity appear, let’s do a variable change from t’ — t'/t
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Which is what we expect...



Problem 2

The equation for an axially dispersed PFR is:
aC; N aC; _ 1 92%C;
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For a simple PFR (Pe, — o), the equation becomes:
aC; 9¢;

o0 "oz =0
Can you use Laplace transforms to solve this equation and calculate E(t) for a simple
dirac (as the input):

() =c0c@t=0and 5(t) =0 fort#0

Reminder: To use Laplace transforms to solve partial differential equations, you should:
1. Transform the equation to Laplace coordinates = this removes time as a variable
and results in an ODE (which you know how to solve)
2. Solve the resulting ODE
3. Do the revers Laplace transform to get the final result

Useful Laplace transforms (from Wikipedia):

Useful properties:

Time domain s domain Comment
Linearity af(t) + bg(t) aF(s) + bG(s) Can be proved using basic rules of integration.
Fi -d i
req:::::"voema "t —F'(s) Fis the first derivative of F.
Frequency-domain _ - .
t" f(t) (-1)"F™ (s) More general form, nth derivative of F(s).

general derivative

fis assumed to be a differentiable function, and its derivative
Derivative (@) sF(s) — f(0) is assumed to be of exponential type. This can then be
obtained by integration by parts

fis assumed twice differentiable and the second derivative to

Second derivative | f”(t) &2 F(s) — sf(0) — £'(0) be of exponential type. Follows by applying the Differentiation
property to (7).
n . o o 2 o " "
—k plk— is assumed to be n-times differentiable, with nth derivative of
General derivative | £(")(£) s"F(s) — E "k f=1) (o) S i - cent
= exponential type. Follows by mathematical induction.

Useful transformations:
Time domain Laplace s-domain

Function _ Region of convergence Reference
f(t) = L7{F(s)} F(s) = L{f(t)}
unit impulse a(t) 1 alls inspection
. ti hift of
delayed impulse ot—1) e mfe.s o
unit impulse
unit step u(t) l Re(s)>0 integrate unit impulse
8
; 1 time shift of
| —_p-Ts >
delayed unit step u(t —7) ~e Re(s)>0 unit step
1 integrate unit
t-u(t —_— R >0
ramp u( ) 82 e(s) impulse twice
nth power £ - u(t) n! Re(s)>0 Integrate unit

(for integer n) gn+l (n>-1) step n times



Solution:
aC; dGC;
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Let’s apply the Laplace transform:
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We apply the boundary condition:

C(Z=0)=L[C(Z = 0,6)] = LIS®)] = 1
@Z=0 C=cst=1

C = exp(—SZ)
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Since:
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Divide by L/uto gett — z/u
C = §(t — z/u) with z/u = time spent in the reactor... In other words, it’s a dirac delayed
by the time spent in the reactor. That’s what we expect:
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