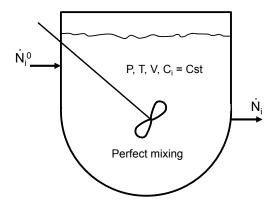
ChE-403 Problem Set 1.3

Week 3

Problem 1

- A) Can you derive/calculate E(t) for a CSTR?
- B) Can you use E(t) to calculate \bar{t} ?



Hint: you measure E(t) by injecting a tracer and measuring the output concentration. Can you calculate what C(t) is for a CSTR if you inject a known number of moles of a tracer (N_i°) at t = 0

You will also need the following integral identity: $\int_0^\infty x \exp(-x) dx = 1$

Solution:

a) @
$$t = 0$$
 the tracer is perfectly mixed/diluted: $C(t = 0) = \frac{N^0}{V_R} = C^0$

After injection the mass balance on the tracer is:

Acc. = In – Out +Source
$$\frac{dN}{dt} = 0 - \dot{N} + 0$$

$$V = cst$$
 $\dot{V} = cst$

$$V_R \frac{dC}{dt} = -\dot{V}C \rightarrow \frac{dC}{C} = -\frac{dt}{\tau}$$

$$\ln\left(\frac{C}{C_0}\right) = -\frac{t}{\tau} \to C = C_0 \exp\left(-\frac{t}{\tau}\right)$$

$$E(t) = \frac{C(t)}{\int_0^\infty C(t')dt'} = \frac{C_0 \exp\left(-\frac{t}{\tau}\right)}{C_0 \tau \left(-\exp(-\infty) + \exp(-0)\right)} = \frac{\exp\left(-\frac{t}{\tau}\right)}{\tau}$$

b)
$$\bar{t} = \int_0^\infty t' E(t') dt'$$

$$\bar{t} = \frac{1}{\tau} \int_0^\infty t' \exp\left(-\frac{t}{\tau}\right) dt'$$

To make our identity appear, let's do a variable change from $t' \to t'/\tau$

$$\bar{t} = \frac{1}{\tau} \int_0^\infty \tau^2 (t'/\tau) \exp\left(-\frac{t'}{\tau}\right) d(t'/\tau) = \frac{\tau^2}{\tau} \int_0^\infty (t'/\tau) \exp\left(-\frac{t'}{\tau}\right) d(t'/\tau)$$
$$= \tau \int_0^\infty x \exp(-x) d(x) = \tau$$

Which is what we expect...

Problem 2

The equation for an axially dispersed PFR is:

$$\frac{\partial C_i}{\partial \theta} + \frac{\partial C_i}{\partial Z} = \frac{1}{Pe_a} \frac{\partial^2 C_i}{\partial Z^2}$$

For a simple PFR $(Pe_a \rightarrow \infty)$, the equation becomes:

$$\frac{\partial C_i}{\partial \theta} + \frac{\partial C_i}{\partial Z} = 0$$

Can you use Laplace transforms to solve this equation and calculate E(t) for a simple dirac (as the input):

$$\delta(t) = \infty$$
 @ $t = 0$ and $\delta(t) = 0$ for $t \neq 0$

Reminder: To use Laplace transforms to solve partial differential equations, you should:

- 1. Transform the equation to Laplace coordinates → this removes time as a variable and results in an ODE (which you know how to solve)
- 2. Solve the resulting ODE
- 3. Do the revers Laplace transform to get the final result

Useful Laplace transforms (from Wikipedia):

Useful properties:

	Time domain	s domain	Comment	
Linearity	af(t)+bg(t)	aF(s)+bG(s)	Can be proved using basic rules of integration.	
Frequency-domain derivative	tf(t)	-F'(s)	F^{\prime} is the first derivative of F .	
Frequency-domain general derivative	$t^n f(t)$	$(-1)^nF^{(n)}(s)$	More general form, n th derivative of $F(s)$.	
Derivative	f'(t)	sF(s)-f(0)	f is assumed to be a differentiable function, and its derivative is assumed to be of exponential type. This can then be obtained by integration by parts	
Second derivative	f''(t)	$s^2F(s)-sf(0)-f'(0)$	f is assumed twice differentiable and the second derivative to be of exponential type. Follows by applying the Differentiation property to $f'(t)$.	
General derivative	$f^{(n)}(t)$	$s^n F(s) - \sum_{k=1}^n s^{n-k} f^{(k-1)}(0)$	f is assumed to be <i>n</i> -times differentiable, with <i>n</i> th derivative of exponential type. Follows by mathematical induction.	

Useful transformations:

Function	Time domain $f(t) = \mathcal{L}^{-1}\{F(s)\}$	Laplace s-domain $F(s) = \mathcal{L}\{f(t)\}$	Region of convergence	Reference
unit impulse	$\delta(t)$	1	all s	inspection
delayed impulse	$\delta(t- au)$	$e^{- au s}$		time shift of unit impulse
unit step	u(t)	$\frac{1}{s}$	Re(s) > 0	integrate unit impulse
delayed unit step	u(t- au)	$rac{1}{s}e^{- au s}$	Re(s) > 0	time shift of unit step
ramp	$t \cdot u(t)$	$\frac{1}{s^2}$	Re(s) > 0	integrate unit impulse twice
nth power (for integer n)	$t^n \cdot u(t)$	$\frac{n!}{s^{n+1}}$	Re(s) > 0 $(n > -1)$	Integrate unit step n times

Solution:

$$\frac{\partial C_i}{\partial \theta} + \frac{\partial C_i}{\partial Z} = 0$$

Let's apply the Laplace transform:

$$\mathcal{L} \rightarrow S\bar{C} - \bar{C}(Z,\theta=0) + \frac{d\bar{C}}{dZ} = 0$$

$$\bar{C}(Z,\theta=0)=0$$

$$\frac{d\bar{C}}{dZ} = -S\bar{C}$$

$$\frac{d\bar{C}}{\bar{C}} = -SdZ$$

$$\bar{C} = cst \exp(-SZ)$$

We apply the boundary condition:

$$\bar{C}(Z=0) = \mathcal{L}[C(Z=0,t)] = \mathcal{L}[\delta(t)] = 1$$

$$@Z = 0, \ \bar{C} = cst = 1$$

$$\bar{C} = \exp(-SZ)$$

$$\mathcal{L}^{-1} \to \mathcal{C} = \delta(\theta - Z)$$

Since:

$$\theta = \frac{t}{\overline{t}} = \frac{tu}{L}$$

$$Z = \frac{Z}{L}$$

Divide by L/u to get t - z/u

 $C = \delta(t - z/u)$ with z/u = time spent in the reactor... In other words, it's a dirac delayed by the time spent in the reactor. That's what we expect:

